Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Interactions of FK506 and Rapamycin With FK506 Binding Protein 12 in Opportunistic Human Fungal Pathogens.

Identifieur interne : 000102 ( Main/Exploration ); précédent : 000101; suivant : 000103

Interactions of FK506 and Rapamycin With FK506 Binding Protein 12 in Opportunistic Human Fungal Pathogens.

Auteurs : Sandeep Vellanki [États-Unis] ; Alexis E. Garcia [États-Unis] ; Soo Chan Lee [États-Unis]

Source :

RBID : pubmed:33195437

Abstract

Over the past few decades advances in modern medicine have resulted in a global increase in the prevalence of fungal infections. Particularly people undergoing organ transplants or cancer treatments with a compromised immune system are at an elevated risk for lethal fungal infections such as invasive candidiasis, aspergillosis, cryptococcosis, etc. The emergence of drug resistance in fungal pathogens poses a serious threat to mankind and it is critical to identify new targets for the development of antifungals. Calcineurin and TOR proteins are conserved across eukaryotes including pathogenic fungi. Two small molecules FK506 and rapamycin bind to FKBP12 immunophilin and the resulting complexes (FK506-FKBP12 and rapamycin-FKBP12) target calcineurin and TOR, respectively in both humans and fungi. However, due to their immunosuppressive nature these drugs in the current form cannot be used as an antifungal. To overcome this, it is important to identify key differences between human and fungal FKBP12, calcineurin, and TOR proteins which will facilitate the development of new small molecules with higher affinity toward fungal components. The current review highlights FK506/rapamycin-FKBP12 interactions with calcineurin/TOR kinase in human and fungi, and development of non-immunosuppressive analogs of FK506, rapamycin, and novel small molecules in inhibition of fungal calcineurin and TOR kinase.

DOI: 10.3389/fmolb.2020.588913
PubMed: 33195437
PubMed Central: PMC7596385


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Interactions of FK506 and Rapamycin With FK506 Binding Protein 12 in Opportunistic Human Fungal Pathogens.</title>
<author>
<name sortKey="Vellanki, Sandeep" sort="Vellanki, Sandeep" uniqKey="Vellanki S" first="Sandeep" last="Vellanki">Sandeep Vellanki</name>
<affiliation wicri:level="2">
<nlm:affiliation>South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Garcia, Alexis E" sort="Garcia, Alexis E" uniqKey="Garcia A" first="Alexis E" last="Garcia">Alexis E. Garcia</name>
<affiliation wicri:level="2">
<nlm:affiliation>South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lee, Soo Chan" sort="Lee, Soo Chan" uniqKey="Lee S" first="Soo Chan" last="Lee">Soo Chan Lee</name>
<affiliation wicri:level="2">
<nlm:affiliation>South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33195437</idno>
<idno type="pmid">33195437</idno>
<idno type="doi">10.3389/fmolb.2020.588913</idno>
<idno type="pmc">PMC7596385</idno>
<idno type="wicri:Area/Main/Corpus">000000</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000000</idno>
<idno type="wicri:Area/Main/Curation">000000</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000000</idno>
<idno type="wicri:Area/Main/Exploration">000000</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Interactions of FK506 and Rapamycin With FK506 Binding Protein 12 in Opportunistic Human Fungal Pathogens.</title>
<author>
<name sortKey="Vellanki, Sandeep" sort="Vellanki, Sandeep" uniqKey="Vellanki S" first="Sandeep" last="Vellanki">Sandeep Vellanki</name>
<affiliation wicri:level="2">
<nlm:affiliation>South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Garcia, Alexis E" sort="Garcia, Alexis E" uniqKey="Garcia A" first="Alexis E" last="Garcia">Alexis E. Garcia</name>
<affiliation wicri:level="2">
<nlm:affiliation>South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lee, Soo Chan" sort="Lee, Soo Chan" uniqKey="Lee S" first="Soo Chan" last="Lee">Soo Chan Lee</name>
<affiliation wicri:level="2">
<nlm:affiliation>South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in molecular biosciences</title>
<idno type="ISSN">2296-889X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Over the past few decades advances in modern medicine have resulted in a global increase in the prevalence of fungal infections. Particularly people undergoing organ transplants or cancer treatments with a compromised immune system are at an elevated risk for lethal fungal infections such as invasive candidiasis, aspergillosis, cryptococcosis, etc. The emergence of drug resistance in fungal pathogens poses a serious threat to mankind and it is critical to identify new targets for the development of antifungals. Calcineurin and TOR proteins are conserved across eukaryotes including pathogenic fungi. Two small molecules FK506 and rapamycin bind to FKBP12 immunophilin and the resulting complexes (FK506-FKBP12 and rapamycin-FKBP12) target calcineurin and TOR, respectively in both humans and fungi. However, due to their immunosuppressive nature these drugs in the current form cannot be used as an antifungal. To overcome this, it is important to identify key differences between human and fungal FKBP12, calcineurin, and TOR proteins which will facilitate the development of new small molecules with higher affinity toward fungal components. The current review highlights FK506/rapamycin-FKBP12 interactions with calcineurin/TOR kinase in human and fungi, and development of non-immunosuppressive analogs of FK506, rapamycin, and novel small molecules in inhibition of fungal calcineurin and TOR kinase.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">33195437</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2296-889X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in molecular biosciences</Title>
<ISOAbbreviation>Front Mol Biosci</ISOAbbreviation>
</Journal>
<ArticleTitle>Interactions of FK506 and Rapamycin With FK506 Binding Protein 12 in Opportunistic Human Fungal Pathogens.</ArticleTitle>
<Pagination>
<MedlinePgn>588913</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmolb.2020.588913</ELocationID>
<Abstract>
<AbstractText>Over the past few decades advances in modern medicine have resulted in a global increase in the prevalence of fungal infections. Particularly people undergoing organ transplants or cancer treatments with a compromised immune system are at an elevated risk for lethal fungal infections such as invasive candidiasis, aspergillosis, cryptococcosis, etc. The emergence of drug resistance in fungal pathogens poses a serious threat to mankind and it is critical to identify new targets for the development of antifungals. Calcineurin and TOR proteins are conserved across eukaryotes including pathogenic fungi. Two small molecules FK506 and rapamycin bind to FKBP12 immunophilin and the resulting complexes (FK506-FKBP12 and rapamycin-FKBP12) target calcineurin and TOR, respectively in both humans and fungi. However, due to their immunosuppressive nature these drugs in the current form cannot be used as an antifungal. To overcome this, it is important to identify key differences between human and fungal FKBP12, calcineurin, and TOR proteins which will facilitate the development of new small molecules with higher affinity toward fungal components. The current review highlights FK506/rapamycin-FKBP12 interactions with calcineurin/TOR kinase in human and fungi, and development of non-immunosuppressive analogs of FK506, rapamycin, and novel small molecules in inhibition of fungal calcineurin and TOR kinase.</AbstractText>
<CopyrightInformation>Copyright © 2020 Vellanki, Garcia and Lee.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Vellanki</LastName>
<ForeName>Sandeep</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Garcia</LastName>
<ForeName>Alexis E</ForeName>
<Initials>AE</Initials>
<AffiliationInfo>
<Affiliation>South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Soo Chan</ForeName>
<Initials>SC</Initials>
<AffiliationInfo>
<Affiliation>South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R25 GM060655</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>10</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Mol Biosci</MedlineTA>
<NlmUniqueID>101653173</NlmUniqueID>
<ISSNLinking>2296-889X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">FK506</Keyword>
<Keyword MajorTopicYN="N">FKBP12</Keyword>
<Keyword MajorTopicYN="N">TOR</Keyword>
<Keyword MajorTopicYN="N">antifungal</Keyword>
<Keyword MajorTopicYN="N">calcineurin</Keyword>
<Keyword MajorTopicYN="N">fungi</Keyword>
<Keyword MajorTopicYN="N">rapamycin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>07</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>09</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>11</Month>
<Day>16</Day>
<Hour>8</Hour>
<Minute>54</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>11</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33195437</ArticleId>
<ArticleId IdType="doi">10.3389/fmolb.2020.588913</ArticleId>
<ArticleId IdType="pmc">PMC7596385</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Virulence. 2018 Dec 31;9(1):707-720</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29436903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Jan 12;7:2173</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28127295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Neurol (Paris). 2006 Feb;162(2):233-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16518265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chest Med. 2017 Sep;38(3):465-477</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28797489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol Rev. 2014 Oct;28(2-3):56-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25383089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 May;48(4):959-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12753189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2000 Oct;80(4):1483-521</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11015619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1997 Jan;41(1):156-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8980772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2017 Jun 1;27(11):2465-2471</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28412204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2003 Jul 15;37(2):221-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12856215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 May 15;16(10):2576-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9184205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kidney Int. 2001 Jan;59(1):3-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11135052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>F1000 Med Rep. 2011;3:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21876720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2015 Jul;15(13):2230-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25728394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2009 Jul;15(7):1068-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19624922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Microbiol. 2018 May;49(1):e53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30040216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Nov 21;7(1):15898</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29162893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Jul;7(7):1085-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18456861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antibiot (Tokyo). 1975 Oct;28(10):727-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1102509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Physiol Pharmacol. 1977 Feb;55(1):48-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">843990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Fungal Infect Rep. 2019 Sep;13(3):86-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31555394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2003 Jun;2(3):422-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12796287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2005 Sep;73(9):5767-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16113294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Microbiol. 2006 Jul;55(Pt 7):809-818</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16772406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2019 Nov 1;37(6):107352</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30797093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Sep 14;10(9):e0137869</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26366742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 2007 Jan;20(1):133-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17223626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2020 Feb 20;15(2):e0224776</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32078630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Mycol. 2013 Apr;51(3):261-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22989195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2000 Apr;30(4):710-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10770733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2018 Nov 28;17(12):864</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30482965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2010 Aug;13(4):409-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20627805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2005 Oct;3(10):753-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16132036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Aug;13(8):5010-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7687745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nat Prod. 2019 Aug 23;82(8):2078-2086</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31321978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AIDS. 2001 Nov 23;15(17):2344-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11698718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2013 Oct;13(5):726-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24011516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2015 Sep;97(5):844-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26010100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2018 Oct 24;62(11):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30181374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2004 May;48(5):1664-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15105118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2016 May 23;60(6):3813-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26976874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2020 May 21;526(1):48-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32192767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Dis Clin North Am. 2010 Jun;24(2):439-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20466278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2008 Feb 1;46(3):327-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18177225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 6;278(23):20457-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12676950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomol NMR Assign. 2019 Apr;13(1):207-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30707421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2016 Apr 26;7(2):e00492-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27118592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AIDS. 2006 Nov 14;20(17):2183-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17086058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2020 Jan 28;11(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31992620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nat Prod. 2013 Jun 28;76(6):1091-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23706030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem. 2019 Mar;11(3):254-263</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30532015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Apr 15;268(11):7607-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7681823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1992 Sep 1;176(3):751-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1380976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Transplant. 2006;6(5 Pt 2):1111-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16613591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Today. 1992 Apr;13(4):136-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1374612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2018 Jan 12;293(2):412-432</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29158264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013;9(9):e1003625</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24039585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2015 Nov;15(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26347504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2001 Nov;45(11):3162-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11600372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 1997 Jan;175(1):222-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8985226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2003 Feb;51(2):313-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12562696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2016 Mar;43(2-3):389-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26342319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Infect Dis Med Microbiol. 2016;2016:5930489</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28058052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2000 Sep;44(9):2296-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10952571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 Aug 06;3(8):e2870</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18682846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2019 Aug;212(4):1241-1258</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31175227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drugs. 2007;67(11):1567-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17661528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2007 Jun;5(6):418-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17505522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Intern Med. 1990 Aug 1;113(3):183-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2197908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2017 Nov;50(5):617-621</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28802855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2004 Oct;42(10):4419-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15472288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2015 Dec;59(12):7197-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26324276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Dec 15;13(24):3271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antibiot (Tokyo). 1987 Sep;40(9):1249-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2445721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Opin Drug Discov. 2017 Sep;12(9):909-923</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28758515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virulence. 2017 Feb 17;8(2):150-158</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27268130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Jun;19(6):4101-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10330150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Today. 1989 Jan;10(1):6-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2473767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2016 Oct;12(10):867-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27571477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2012 Mar;11(3):270-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22210828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2019 Nov 21;10:2573</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31824443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2012 Feb;54 Suppl 1:S23-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22247442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Drug Resist. 2017 Aug 29;10:249-259</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28919789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Mar 30;335(6076):1638-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22461615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Aug 23;66(4):807-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2006 Jul;5(7):1091-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16835453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem. 2017 Aug 1;25(15):4145-4152</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28625715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Aug 1;8(1):11559</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30068935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2019 Sep 19;10(1):4275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31537789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Infect. 2004 Mar;10 Suppl 1:1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14748798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2010 Apr;54(4):1555-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2020 Apr;26(4):804-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32186508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2005 Apr;73(4):2012-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15784542</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Texas</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Texas">
<name sortKey="Vellanki, Sandeep" sort="Vellanki, Sandeep" uniqKey="Vellanki S" first="Sandeep" last="Vellanki">Sandeep Vellanki</name>
</region>
<name sortKey="Garcia, Alexis E" sort="Garcia, Alexis E" uniqKey="Garcia A" first="Alexis E" last="Garcia">Alexis E. Garcia</name>
<name sortKey="Lee, Soo Chan" sort="Lee, Soo Chan" uniqKey="Lee S" first="Soo Chan" last="Lee">Soo Chan Lee</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000102 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000102 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33195437
   |texte=   Interactions of FK506 and Rapamycin With FK506 Binding Protein 12 in Opportunistic Human Fungal Pathogens.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33195437" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020